
Rubrik

Isogeny-based cryptography
Chloe Martindale, Technische Universiteit Eindhoven
Lorenz Panny, Technische Universiteit Eindhoven

chloemartindale@gmail.com
lorenz@yx7.cc

Introduction
Quantum computers threaten to break most of the

cryptography we are currently using to secure critical
computer systems such as the internet. A quantum com-
puter is a machine which employs quantum-physical
phenomena to perform computations in a way that’s fun-
damentally different from a “normal”, classical, com-
puter. Whereas a classical computer is, at any point in
time, in a fixed state — such as a bit string representing
its memory contents — the state of a quantum computer
can be a “mixture”, a so-called superposition, of sev-
eral states. Note that the internal state is hidden: The
only way to get information about the state is to per-
form a measurement, which will return a single non-
superimposed classical output, such as a bit string, that
is randomly distributed according to the internal state,
and the internal state gets replaced by the measurement
outcome. For example, when measuring an equal su-
perposition of the two-qubit states |00〉 and |11〉, the re-
sult would be one of the bit strings 00 or 11 with prob-
ability 1/2 each. Now a quantum algorithm consists of
applying a carefully crafted sequence of operations to
the internal state of a quantum computer in order to am-
plify the desired piece of information in the superposi-
tion, followed by measurements to extract the result.

The extra computational power thanks to the abil-
ity to store and manipulate superpositions of states al-
lows for more efficient algorithms to tackle some com-
putational problems. Note that contrary to a common
misconception, quantum computers are not known to
provide massive speedups over classical computers for
“many”, or even “all”, tasks; in fact, there is only a hand-
ful of problems where known quantum algorithms out-
perform the best currently known classical algorithms.
Unfortunately, many of these problems are at the heart
of today’s cryptographic systems; we shall see an exam-
ple of this in the next section.

To deal with this problem, researchers have come
up with post-quantum cryptography, a set of proposals
for solutions to the looming threat of quantum comput-
ers on the cryptography currently in use. It may seem

that quantum computers effective enough to break real-
world encryption are a long way off: Building a quan-
tum computer with enough qubits, and keeping them
stable for long enough to be useful, poses a set of incred-
ibly difficult physics and engineering challenges. How-
ever, no matter whether one believes powerful quantum
computers are five years off or thirty years off, there is
a compelling argument for acting as early as possible:
People are now sharing plenty of data via cryptograph-
ically secured channels that they intend to stay private
forever — or at least for a very long time —, even when
stored now and attacked later with a quantum computer.
This includes online audio or video telephony, private
messages sent through chat services such as WhatsApp,
and other sensitive data such as medical or financial
records. In the words of a recent report by the United
States’ National Academy of Sciences:

Even if a quantum computer that can decrypt
current cryptographic ciphers is more than a
decade off, the hazard of such a machine is
high enough — and the time frame for transi-
tioning to a new security protocol is sufficiently
long and uncertain — that prioritization of the
development, standardization, and deployment
of post-quantum cryptography is critical for
minimizing the chance of a potential security
and privacy disaster. [13]

Isogeny-based cryptography is a specific type of
post-quantum cryptography that uses certain well-
behaved maps between abelian varieties over finite
fields (typically elliptic curves) as its core building
block. Its main advantages are relatively small keys
and its rich mathematical structure, which poses some
extremely interesting questions to cryptographers and
computer algebraists.

The Autumn 2018 issue of this Rundbrief con-
tained an article on post-quantum cryptography giving
an overview of the main families of proposed construc-
tions. We refer interested readers there for a broader dis-
cussion of things happening in the field of post-quantum
cryptography.
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Classical cryptographic key exchange
An important building block of many cryptographic

systems, including the ubiquitous TLS protocol used to
secure communication with websites, is a secure key ex-
change. Imagine you and a friend want to be able to
send each other messages in a (metaphorical) locked
box over an insecure channel, so you both need the same
key. Since it’s often not practical to exchange keys in
person with everyone you want to send messages to, you
also need a way of agreeing on a shared secret key over
an insecure channel, with nobody else besides you and
your friend being able to figure out what that key is. The
key can be anything, so long as it’s the same for all the
parties involved; typically it is encoded as a bit string.

There are several ways to do this, the most common
being the Diffie–Hellman key exchange. The security of
this method is based on the fact that, for a finite groupG,
if you share an element g ∈ G and some randomly cho-
sen power ga ∈ G, it is in general very hard for a corrupt
bystander to compute a. The traditional (but now mostly
deprecated) instantiation consists of fixing a prime p and
computing in the group F∗p, i.e., the element g is simply
an integer and the power ga is computed modulo p.

To use this operation for a key exchange, our two
parties Alice and Bob first agree on a group G and an
element g ∈ G. Alice then chooses a secret positive
integer a, and Bob chooses a secret positive integer b.
Together, they can then compute the value gab over a
public channel as follows:

Alice (public) Bob

a← random b← random
compute ga compute gb

receive B receive A
compute Ba = gab compute Ab = gab

Figure 1: The Diffie–Hellman key exchange.

The obvious way to attack this scheme is to recover one
of the secrets a and b from the publicly transmitted val-
ues ga and gb. This is known as the discrete-logarithm
problem, which appears to be computationally hard for
classical computers when the group G is well-chosen.

However, unfortunately, one thing that quantum
computers are particularly good at is finding periods of
computable functions using (variants of) an algorithm
by Shor [11], which can be used to attack the discrete-
logarithm problem as follows. Note that public values
gx are simply group elements: They can be multiplied
together, and this satisfies the rule gx·gy = gx+y. This is
exactly the operation that reduces breaking the scheme
to finding a period: Given the element g and a public
key A = ga, we can define the group homomorphism

f : Z2 → G, (x, y) 7→ gx ·Ay = gx+ay .

Hence f is a periodic map whose period lattice is just its
kernel, i.e., those pairs (x, y) ∈ Z2 where gx+ay = 1.

Shor’s algorithm can, in polynomial time, find a basis
of this lattice from an efficient description of the map f .
We can then look for a vector of the form (τ,−1) in the
lattice, which must equal (a,−1) modulo the order of g,
thus we have found a. The bottom line is that Diffie–
Hellman is broken by quantum computers in all groups.
Is this the end?

Luckily, in the aftermath of the discovery of Shor’s
algorithm, the traditional Diffie–Hellman framework
has been extended to schemes which have similar traits,
but do not rely on exponentiation maps in groups being
one-way. One of these variants uses isogeny graphs.

Key exchange from graphs

Before we talk about isogeny graphs, let’s first see
how to get a shared value (key) from a more familiar
graph. Here “graph” refers to a collection of nodes
(dots) and edges (lines between them). For example, we
can create a graph from a map of Manhattan by drawing
a node at every junction and drawing an edge for every
street. Then if Green and Red want to compute a shared
value, they each choose a (secret) path from a common
starting point, share the coordinates of their endpoints,
then follow the same path from each other’s endpoints
to end up at the same final coordinates.

Figure 2: Diffie–Hellman in Manhattan.

However, this clearly isn’t a secure way of exchang-
ing keys — anyone can find a path from the common
starting point to either Green or Red’s end-of-path co-
ordinates and thus compute the shared final coordinates,
literally by adding and subtracting. To turn this ap-
proach into a secure key exchange, we need to replace
our graph of Manhattan with a less structured graph, one
in which finding a path between two given nodes is in-
feasible. On the other hand, the graph still needs to have
enough structure to allow composing paths in a mean-
ingful, commutative way, such that both parties end up
at the same spot.

This is where isogenies comes in: They give rise to
two families of graphs which are believed to have all the
required properties for a (post-quantum) key exchange.
Typical examples of these graphs look like this:
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Figure 3: Special isogeny graphs over a finite field.

In both graphs, each node represents an elliptic curve,
which can be represented as a certain kind of polyno-
mial, and the edges represent maps between the elliptic
curves called isogenies.

Elliptic curves and isogenies
We shall now explain some of the necessary back-

ground for understanding isogeny-based cryptography.
Let p ≥ 5 be a prime. An elliptic curve over Fpk

can then be defined as a smooth curve with equation
E : y2 = f(x), where f(x) is a degree-3 polynomial
with coefficients in Fpk .
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Figure 4: Two elliptic curves over R.

“Smooth” means that the graph does not intersect itself
or have any sharp points (“cusps”). These equations are
especially interesting because the solutions that are de-
fined over Fpk , together with one extra element, form
an abelian group denoted E(Fpk). The extra element is
referred to as the point at infinity∞ and is defined to be
lying on every vertical line that intersects the curve. The
point ∞ is also the identity element of the group. The
inverse of a point (a solution P = (x0, y0) to the defin-
ing polynomial of E) is defined to be −P = (x0,−y0).
Notice that on a vertical line that intersects the elliptic
curve in a point P = (x0, y0), there are a total of three
points in the group of solutions to the polynomial of E:
the point P , its inverse −P , and the point at infinity∞.
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Figure 5: Negating a point.

In fact, this is no coincidence: any straight line that in-
tersects the elliptic curve will intersect it exactly three
times (when counting tangents as intersecting twice and
also taking∞ into account). We use this fact to define
the group operation onE(Fpk): Given any two solutions
P = (xP , yP ) and Q = (xQ, yQ), draw the straight line
passing through P and Q. This line will intersect the
elliptic curve in exactly one more point R, and it turns
out that the coordinates of this point will also be defined
over Fpk . We then define a group law, written as +, by
requiring that P +Q+R =∞, the neutral element.
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Figure 6: Adding points.

This group structure has led number theorists and geo-
meters to study interesting properties of elliptic curves
for centuries, and more recently elliptic curves have also
enticed cryptographers, most importantly because one
can base a very compact and efficient Diffie–Hellman
key exchange on it. We need a little more though for a
post-quantum scheme, since Shor’s quantum algorithm
to compute discrete logarithms of course also applies to
this group.

Especially important in isogeny-based cryptography
is a specific subclass of elliptic curves: Supersingular
elliptic curves. An elliptic curve E defined over Fpk is
supersingular if p |

(
pk + 1 − #E(Fpk)

)
. The most

important special cases that come up are E defined over
Fp with #E(Fp) = p+ 1, and E defined over Fp2 with
#E(Fp2) = (p + 1)2. In a nutshell, this is useful be-
cause it allows to easily enforce a special group order:
Given any prime p and k ∈ {1, 2}, it is known how
to generate a supersingular elliptic curve with (p + 1)k

points over Fpk , hence we can control the group struc-
ture by choosing p in a special way. By contrast, it is
not generally known how to efficiently find an elliptic
curve with a given number of points, except in particu-
larly nice special cases.

Recall that each node in the graphs we want to use
for our post-quantum key exchange represents an ellip-
tic curve. Since these graphs also have edges we need
a way of passing from one node to another, which natu-
rally will be a rational map that maps one curve to the
other, and we will also want these maps to preserve the
group structure of the elliptic curves. An isogeny is a
non-zero map between elliptic curves that satisfies these
things. More precisely, it is a surjective morphism of
abelian varieties with finite kernel. The kernel subgroup
is of utmost importance: In fact, one can prove that a
(separable) isogeny is essentially uniquely defined by its
kernel subgroup, and one can compute an isogeny from
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its kernel in time linear in the size. Every isogeny has
a degree, and typically (for separable isogenies) the de-
gree is equal to the size of the kernel. Thus in a sense,
the degree quantifies the algebraic and algorithmic com-
plexity of an isogeny. However, since the secret keys in
our cryptosystems are isogenies, we will use isogenies
with “crypto-sized” (big) degrees! So how do we com-
pute these isogenies quickly? The solution is to use an
isogeny of very smooth degree, say degϕ = `k for a
small `, and factor it into a composition of much smaller
prime-degree maps:

E E1 Ek−1 E′

ϕ

ψ1 · · · ψk

Figure 7: Decomposing a smooth-degree isogeny.

Note that the sequence (ψ1, ..., ψk) can be computed
in O(k · `2) field operations, whereas naı̈vely com-
puting the entire map ϕ all at once would take time
Θ(degϕ) = Θ(`k): exponentially more.

The mathematics behind all of this is much richer
than we can show in this short article. Interested readers
are kindly referred to Luca De Feo’s lecture notes [4].

Key exchange on isogeny graphs

In Figure 3 we saw two very different isogeny
graphs that are used in cryptographic protocols. The two
protocols built on these two types of graphs are called
CSIDH [2] (pronounced “seaside”, stands for “Com-
mutative Supersingular-Isogeny Diffie–Hellman”) and
SIDH [8, 7] (pronounced as individual letters, stands for
“Supersingular-Isogeny Diffie–Hellman”).

CSIDH

We will show the CSIDH key exchange on a small (def-
initely not cryptographically-sized) example. We have
seen how to perform an (insecure) key exchange on the
graph on Manhattan — CSIDH is an implementation of
the same idea on an isogeny graph with:

• Nodes given by supersingular elliptic curves EA

with equation y2 = x3 +Ax2 + x for A ∈ F419.

• Edges given by 3-, 5-, and 7-isogenies.

Almost as though by magic, this graph turns out to be
very structured: Every node has exactly two outgoing
edges of each colour, and the resulting cycles are com-
patible in the sense that a red step is always equivalent
to the same number of blue steps, etc., independent of
the position:

A 3-isogeny

E51: y
2=x3+51x2+x E9: y

2=x3+9x2+x

(x, y)

(
97x3−183x2+x

x2−183x+97 ,

y· 133x3+154x2−5x+97

−x3+65x2+128x−133

)

Figure 8: An isogeny graph with a zoomed-in edge.

Now if Alice and Bob want to compute a shared value in
this graph, they each choose a (secret) path from a com-
mon starting point, share their endpoints, then follow the
same path from the respective other party’s endpoint to
end up at the same final node — just like in the Manhat-
tan example. We describe a path by a list of directions:
one step clockwise (+) or anticlockwise (−) on the sub-
graph of a given colour.

Alice Bob
[ , , , ] [ , , , ]

=

Figure 9: Key exchange on a regular isogeny graph.

On an unstructured graph, there is a priori no reason why
Alice and Bob would end up at the same node after fol-
lowing this “graph key exchange” method. So what is it
about the structure of this graph that makes this work?

1For number theory experts: a (separable) isogeny is (up to isomorphism) uniquely defined by its kernel, which corresponds to an ideal
in the common Fp-rational endomorphism ring Z[

√
−p] of every such elliptic curve. The codomains of such isogenies then only depend on

the class of the corresponding ideal, hence the action of G can be considered an action of (a subgroup of) the class group cl(Z[
√
−p]).
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Consider the set of clockwise and anticlockwise `-
isogenies as ` ranges over the non-negative integers,
taken up to isomorphism. This set forms a commuta-
tive group G that acts on the set of supersingular elliptic
curves EA : y2 = x3 + Ax2 + x with A ∈ Fp.1 Write
f+` and f−` for clockwise and anticlockwise `-isogenies
respectively. In our key-exchange example above, Alice
computes her curve EA by computing the action of

fA = f7
+ · f5+ · f3− · f3−

on E0, written as EA := fA ∗E0, and Bob computes his
elliptic curve EB by computing the action of

fB = f7
+ · f5− · f7+ · f3+

on E0, written as EB := fB ∗ E0. Then Alice and Bob
send each other EA and EB and compute the actions
fA ∗ EB and fB ∗ EA respectively. Now, as fA and fB
are both elements in a commutative group,

fA ∗ EB = (fA · fB) ∗ E0

= (fB · fA) ∗ E0 = fB ∗ EA.

So Alice’s endpoint fA∗EB and Bob’s endpoint fB∗EA

are the same!
Observe that, during this exchange, Alice never

needs to communicate the isogeny group element fA;
this is her private key. With a much larger example, i.e.,
replacing 419 by a prime of several hundred (or even
thousand) bits, and using a much longer list of `s, re-
covering this secret isogeny group element given just the
start and end curve becomes infeasible for an attacker.

You may be thinking: doesn’t Shor’s algorithm ap-
ply to groups? Can I attack this commutative “isogeny
group” with a quantum computer? The fundamental dif-
ference is that in traditional Diffie–Hellman, the public
keys themselves are elements of the group, whereas in
CSIDH, only the private keys are elements of a group —
the public keys are elements of a set on which the group
acts, and the operation gx · gy = gx+y we’ve seen ex-
ploited earlier to apply Shor’s algorithm to the discrete-
logarithm problem simply does not exist. However,
there is a quantum algorithm due to Kuperberg which
attacks the action of a commutative group on the set
of public keys to get a subexponential (but still super-
polynomial) quantum attack [9, 10, 3]. In practice, this
means that in order to be post-quantum secure, the pa-
rameters (like the prime p) have to be chosen larger than
if the best attack was exponential; exactly how much
larger is an ongoing research question.

SIDH

On the second graph in Figure 3, there is no evident
group action — it looks just random. This rightfully
suggests that Kuperberg’s algorithm may not apply to
finding a path on this graph, so the security level might
scale better. However, it is not obvious how to even

make a key-exchange protocol work on this graph: The
extremely regular structure of the CSIDH graph aided in
getting Alice and Bob’s operations to commute, whereas
in this case everything looks rather messy.

Happily, the graph does still carry enough structure,
due to the fact that an isogeny is uniquely defined by its
kernel. Alice and Bob (publicly) agree on a common
starting curve E/Fp2 and choose secret subgroups A
and B of E(Fp2). Writing ϕA and ϕB for the isogenies
with those subgroups as kernel, the following diagram
commutes (up to isomorphism) when A′ = ϕB(A) and
B′ = ϕA(B), and therefore an isomorphism invariant
of the curve E/〈A,B〉 can be used as a shared secret:

E E/A

E/B E/〈A,B〉

ϕA

ϕB

ϕA′

ϕB′

Figure 10: High-level view of SIDH.

Here, the horizontal arrows are computed by Alice and
the vertical arrows are computed by Bob. Focussing on
Alice, the only problem left is that she needs to some-
how obtain A′ = ϕB(A), but Bob cannot give out ϕB

since that’s his secret.
The solution is that isogenies are also group homo-

morphisms on the corresponding groups of elliptic curve
points: While Bob cannot give out ϕB , he can evaluate
this map on publicly known points P,Q ∈ E(Fp2) and
reveal P ′ = ϕB(P ) and Q′ = ϕB(Q). If Alice then
chooses her subgroup A of the form 〈P + [a]Q〉 (that is,
a cyclic group generated by P + [a]Q), she can simply
compute A′ as 〈P ′ + [a]Q′〉.

Similarly, Alice publishes images of known points
under her own secret ϕA, allowing Bob to find B′.

This is the high-level mathematical overview of the
protocol — of course there are many more interesting
details in practice, for example one still has to en-
sure that the points P ′, Q′ do not leak computationally
useful2 information about ϕB (similarly for ϕA), and
choose the other parameters of the system in such a way
that everything Alice and Bob need to compute is effi-
cient in practice.

More advanced protocols
In this article we’ve only shown two simple key-

exchange protocols using different kinds of isogeny
graphs. However, the underlying mathematical ideas
give rise to many other interesting cryptographic con-
structions, some of which seem impossible or harder to
build without the use of isogenies.

For instance, one can build a verifiable delay
function from isogenies [6]: A VDF is a random-
looking function which is inherently slow to compute —
independently of the algorithms used, the amount of

2We emphasize that while the action on a set of points often uniquely identifies an isogeny, it is not generally known how to compute
the isogeny from that information.
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hardware available, and parallelism — but on the other
hand it is efficient for anyone to verify afterwards that
the result is correct. (In the isogeny-based construc-
tion, the slow part consists of a long isogeny evaluation,
and the verification part is a single elliptic-curve pair-
ing.) This functionality may seem like not more than
an odd curiosity, but in fact it has enough relevance in
the distributed-systems world that blockchain projects
are currently investing one hundred thousand US dol-
lars [14] in the development of VDF technology (albeit
founded on different mathematical ideas).

Another interesting example is the construction
of digital signatures from isogenies: A recent pa-
per [1] proposes a practical signature scheme CSI-
FiSh (pronounced “seafish”, stands for “Commuta-
tive Supersingular-Isogeny Fiat–Shamir”) based on
CSIDH’s 512-bit parameter set. The main contribu-
tion is a massive precomputation effort in the form of
a record-breaking class-group computation, which al-
lows uniform sampling of isogeny walks — an impor-
tant ingredient of the signature scheme. It is not known
how to adapt this scheme to bigger (read: more secure)
parameters: the effort for the class-group computation
quickly grows too big for currently known techniques.
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